Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc.

En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica.
Las funciones polinómicas reales son funciones suaves, es decir, son infinitamente diferenciables (tienen derivadas de todos los órdenes). Debido a su estructura simple, las funciones polinómicas son muy sencillas de evaluar numéricamente, y se usan ampliamente en análisis numérico para interpolación polinómica o para integrar numéricamente funciones más complejas. Una manera muy eficiente para evaluar polinomios es la utilización de la regla de Horner.
En álgebra lineal el polinomio característico de una matriz cuadrada codifica muchas propiedades importantes de la matriz. En teoría de los grafos el polinomio cromático de un grafo codifica las distintas maneras de colorear los vértices del grafo usando x colores.
Con el desarrollo de la computadora, los polinomios han sido remplazados por funciones spline en muchas áreas del análisis numérico. Las splines se definen a partir de polinomios y tienen mayor flexibilidad que los polinomios ordinarios cuando definen funciones simples y suaves. Estas son usadas en la interpolación spline y en gráficos por computadora.
No hay comentarios.:
Publicar un comentario